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Abstract. Basic elements of front-end electronics and signal processing for radiation detectors
are presented. The text covers system components, signal resolution, electronic noise and
filtering, digitization, and some common pitfalls in practical systems.

INTRODUCTION

Electronics are a key component of all modern detector systems. Although
experiments and their associated electronics can take very different forms, the basic
principles of the electronic readout and optimization of signal-to-noise ratio are the
same. This paper provides a summary of front-end electronics components and
discusses signal processing with an emphasis on electronic noise. Because of space
limitations, this can only be a brief overview. The full course notes are available as pdf
files on the world wide web [1]. More detailed discussions on detectors, signal
processing and electronics are also available on the web [2].

The purpose of pulse processing and analysis systems is to

1. Acquire an electrical signal from the sensor. Typically this is a short current
pulse.

2. Tailor the time response of the system to optimize
a) the minimum detectable signal (detect hit/no hit),
b) energy measurement,
c) event rate,
d) time of arrival (timing measurement),
e) insensitivity to sensor pulse shape,

or some combination of the above.
3. Digitize the signal and store for subsequent analysis.

Position-sensitive detectors utilize the presence of a hit, amplitude measurement or
timing, so these detectors pose the same set of requirements. Generally, these
properties cannot be optimized simultaneously, so compromises are necessary.

In addition to these primary functions of an electronic readout system, other
considerations can be equally or even more important, for example, radiation
resistance, low power (portable systems, large detector arrays, satellite systems),
robustness, and – last, but not least – cost.



Example System

Fig. 1 illustrates the components and functions in a radiation detector using a
scintillation detector as an example. Radiation – in this example gamma rays – is
absorbed in a scintillating crystal, which produces visible light photons. The number
of scintillation photons is proportional to the absorbed energy. The scintillation
photons are detected by a photomultiplier (PMT), consisting of a photocathode and an

electron multiplier. Photons absorbed in the photocathode release electrons, where the
number of electrons is proportional to the number of incident scintillation photons. At
this point energy absorbed in the scintillator has been converted into an electrical
signal whose charge is proportional to energy. The electron multiplier increases this
signal charge by a constant factor. The signal at the PMT output is a current pulse.
Integrated over time this pulse contains the signal charge, which is proportional to the
absorbed energy.  The signal now passes through a pulse shaper whose output feeds an
analog-to-digital converter (ADC), which converts the analog signal into a bit-pattern
suitable for subsequent digital storage and processing. If the pulse shape does not
change with signal charge, the peak amplitude – the pulse height – is a measure of the
signal charge, so this measurement is called pulse height analysis. The pulse shaper
can serve multiple functions, which are discussed below. One is to tailor the pulse
shape to the ADC. Since the ADC requires a finite time to acquire the signal, the input
pulse may not be too short and it should have a gradually rounded peak. In
scintillation detector systems it is frequently an integrator and implemented as the first
stage of the ADC, so it is invisible to the casual observer. Then the system appears
very simple, as the PMT output is plugged directly into a charge-sensing ADC.

Detection Limits and Resolution

The minimum detectable signal and the precision of the amplitude measurement are
limited by fluctuations. The signal formed in the sensor fluctuates, even for a fixed
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FIGURE 1.  Example detector signal processing chain.



energy absorption. Generally, sensors convert absorbed energy into signal quanta. In
the scintillation detector shown as an example above, absorbed energy is converted
into a number of scintillation photons. In an ionization chamber, energy is converted
into a number of charge pairs (electrons and ions in gases or electrons and holes in
solids). The absorbed energy divided by the excitation energy yields the number of
signal quanta / iN E ε=  .

This number fluctuates statistically, so the relative resolution

ε∆ ∆
= = = iFE N FN

E N N E
 .

The resolution improves with the square root of energy. F is the Fano factor, which
comes about because multiple excitation mechanisms can come into play and reduce
the overall statistical spread. For example, in a semiconductor absorbed energy forms
electron-hole pairs, but also excites lattice vibrations – quantized as phonons – whose
excitation energy is much smaller (meV vs. eV). Thus many more excitations are
involved than apparent from the charge signal alone and this reduces the statistical
fluctuations of the charge signal. For example, in Si the Fano factor is 0.1.

In addition, electronic noise introduces baseline fluctuations, which are
superimposed on the signal and alter the peak amplitude. Fig. 2 (left) shows a typical
noise waveform. Both the amplitude and time distributions are random.

When superimposed on a signal, the noise alters the both the amplitude and time
dependence. Fig. 2 (right) shows the noise waveform superimposed on a small signal.
As can be seen, the noise level determines the minimum signal whose presence can be
discerned.

In an optimized system, the time scale of the fluctuations is comparable to that of
the signal, so the peak amplitude fluctuates randomly above and below the average
value. This is illustrated in Fig. 3, which shows the same signal viewed at four
different times. The fluctuations in peak amplitude are obvious, but the effect of noise
on timing measurements can also be seen. If the timing signal is derived from a
threshold discriminator, where the output fires when the signal crosses a fixed
threshold, amplitude fluctuations in the leading edge translate into time shifts. If one
derives the time of arrival from a centroid analysis, the timing signal also shifts
(compare the top and bottom right figures). From this one sees that signal-to-noise
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FIGURE 2.  Waveform of random noise (left) and signal + noise (right), where the peak signal is equal
to the r.m.s. noise level (S/N = 1). The noiseless signal is shown for comparison.



ratio is important for all measurements – sensing the presence of a signal or the
measurement of energy, timing, or position.

ACQUIRING THE SENSOR SIGNAL

The sensor signal is usually a short current pulse ( )Si t . Typical durations vary
widely, from 100 ps for thin Si sensors to tens of µs for inorganic scintillators.
However, the physical quantity of interest is the deposited energy, so one has to
integrate over the current pulse

( )∝ = ∫S SE Q i t dt .

This integration can be performed at any stage of a linear system, so one can

1. integrate on the sensor capacitance,
2. use an integrating preamplifier (“charge-sensitive” amplifier),
3. amplify the current pulse and use an integrating ADC (“charge sensing” ADC),
4. rapidly sample and digitize the current pulse and integrate numerically.

In high-energy physics the first three options tend to be most efficient.

TIME TIME
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FIGURE 3.  Signal plus noise at four different times. The noiseless signal is superimposed for
comparison.



Signal Integration

Fig. 4 illustrates signal formation of an ionization chamber connected to an
amplifier with a very high input resistance. The ionization chamber volume could be
filled with gas or a solid, as in a silicon sensor. As mobile charge carriers move
towards their respective electrodes they change the induced charge on the sensor
electrodes, which form a capacitor detC . If the amplifier has a very small input

resistance iR , the time constant ( )τ = +i det iR C C for discharging the sensor is small,
and the amplifier will sense the signal current. However, if the input time constant is
large compared to the duration of the current pulse, the resulting voltage at the
amplifier input

=
+
S

in

det i

Q
V

C C
 .

The magnitude of the signal is dependent on the sensor capacitance. In a system with
varying sensor capacitances, a Si tracker with varying strip lengths, for example, or a
partially depleted semiconductor sensor, where the capacitance varies with the applied
bias voltage, one would have to deal with additional calibrations. Although this is
possible, it is awkward, so it is desirable to use a system where the charge calibration
is independent of sensor parameters. This can be achieved rather simply with a charge-
sensitive amplifier.

Fig. 5 shows the principle of a feedback amplifier that performs integration. It
consists of an inverting amplifier with voltage gain -A and a feedback capacitor Cf

connected from the output to the input. To simplify the calculation, let the amplifier
have infinite input impedance, so no current flows into the amplifier input. If an input
signal produces a voltage iv  at the amplifier input, the voltage at the amplifier output

is iAv− . Thus, the voltage difference across the feedback capacitor ( 1)f iv A v= +  and

the charge deposited on Cf  is ( 1)f f f f iQ C v C A v= = + . Since no current can flow into

the amplifier, all of the signal current must charge up the feedback capacitance, so

f iQ Q= . The amplifier input appears as a “dynamic” input capacitance
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Figure 4. Charge collection and signal integration in an ionization chamber
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so the charge gain is determined by a well-controlled component, the feedback
capacitor. The signal charge SQ  will be distributed between the sensor capacitance

detC  and the dynamic input capacitance iC . The ratio of measured charge to signal
charge
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so the dynamic input capacitance must be large compared to the sensor capacitance.

Another very useful byproduct of the integrating amplifier is the ease of charge
calibration. By adding a test capacitor as shown in Fig. 6, a voltage step injects a well-
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FIGURE 6.  Charge calibration circuitry of a charge-sensitive amplifier
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defined charge into the input node. If the dynamic input capacitance iC  is much larger
than the test capacitance TC , the voltage step at the test input will be applied nearly
completely across the test capacitance TC  , thus injecting a charge TC V∆ into the
input.

Realistic Charge-Sensitive Amplifiers

The preceding discussion assumed that the amplifiers are infinitely fast, that is that
they respond instantaneously to the applied signal. In reality this is not the case;
charge-sensitive amplifiers often respond much more slowly than the time duration of
the current pulse from the sensor. However, as shown in Fig. 7, this does not obviate
the basic principle. Initially, signal charge is integrated on the sensor capacitance, as
indicated by the left hand current loop. Subsequently, as the amplifier responds the
signal charge is transferred to the amplifier.

Nevertheless, the time response of the amplifier does affect the measured pulse
shape. First, consider a simple amplifier as shown in Fig. 8.

The gain element shown is a bipolar transistor, but it could also be a field effect
transistor (JFET or MOSFET) or even a vacuum tube. The transistor’s output current
changes as the input voltage is varied. Thus, the voltage gain
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FIGURE 8.  A simple amplifier
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The parameter mg  is the transconductance, a key parameter that determines gain,
bandwidth and noise of transistors. The load impedance LZ  is the parallel

combination of the load resistance LR and the output capacitance oC . This capacitance
is unavoidable; every gain device has an output capacitance, the following stage has
an input capacitance, and in addition the connections and additional components
introduce stray capacitance. The load impedance is given by

1 1
o

L L
C

Z R
ω= + i  ,

where the imaginary i indicates the phase shift associated with the capacitance. The
voltage gain

1
1

V m o
L

A g C
R

ω
−

 
= + 

 
i .

At low frequencies where the second term is negligible, the gain is constant
 V m LA g R= . However, at high frequencies the second term dominates and the gain

falls off linearly with frequency with a 90° phase shift, as illustrated in Fig. 9. The
cutoff frequency, where the asymptotic low and high frequency responses intersect, is
determined by the output time constant L oR C , so the cutoff frequency

1
2U

L o
f

R Cπ
= .

In the regime where the gain drops linearly with frequency the product of gain and
frequency is constant, so the amplifier can be characterized by its gain-bandwidth
product, which is equal to the frequency where the gain is one, the unity gain
frequency 0ω .

The frequency response translates into a time response. If a voltage step is applied
to the input of the amplifier, the output does not respond instantaneously, as the output
capacitance must first charge up. This is shown in Fig. 10.
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In practice, amplifiers utilize multiple stages, all of which contribute to the
frequency response. However, for use as a feedback amplifier, only one time constant
should dominate, so the other stages must have higher cutoff frequencies. Then the
overall amplifier response is as shown in Fig. 9, except that at high frequencies
additional corner frequencies appear.

We can now use the frequency response to calculate the input impedance and time
response of a charge-sensitive amplifier. Applying the same reasoning as above, the
input impedance of an amplifier as shown in Fig. 5, but with a generalized feedback
impedance fZ , is

  ( 1)
1

f f
i

Z Z
Z A

A A
= ≈

+
?

At low frequencies the gain is constant and has a constant 180° phase shift, so the
input impedance is of the same nature as the feedback impedance, but reduced by
1/ A . At high frequencies well beyond the amplifier’s cutoff frequency Uf , the gain

drops linearly with frequency with an additional 90° phase shift, so the gain

0A ω
ω

= −i

In a charge-sensitive amplifier the feedback impedance
1

f
f

Z
Cω

= −i ,

so the input impedance
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The imaginary component vanishes, so the input impedance is real. In other words, it
appears as a resistance. Thus, at low frequencies Uf f<  the input of a charge-sensitive

amplifier appears capacitive, whereas at high frequencies Uf f>  it appears resistive.
Suitable amplifiers invariably have corner frequencies well below the frequencies

of interest for radiation detectors, so the input impedance is resistive. This allows a
simple calculation of the time response. The sensor capacitance is discharged by the
resistive input impedance of the fedback amplifier with the time constant

0

1
i i det det

f
R C C

C
τ

ω
= = ⋅ .

From this we see that the rise time of the charge-sensitive amplifier increases with
sensor capacitance. For reasons that will become apparent later, the feedback
capacitance should be much smaller than the sensor capacitance. If /100f detC C= , the

amplifier’s gain-bandwidth product must be 100/ iτ , so for a rise time constant of
10 ns the gain-bandwidth product must be 1010 radians = 1.6 GHz. The same result
can be obtained using conventional operational amplifier feedback theory.

Apart from determining the signal rise time, the input impedance is critical in
position-sensitive detectors. Fig. 11 illustrates a silicon-strip sensor read out by a bank
of amplifiers. Each strip electrode has a capacitance SGC  to the backplane and a



fringing capacitance SSC  to the neighboring strips. If the amplifier has an infinite

input impedance, charge induced on one strip will capacitively couple to the neighbors
and the signal will be distributed over many strips (determined by /SS SGC C ). If, on
the other hand, the input impedance of the amplifier is low compared to inter-strip
impedance 1/ /SS i SSC Cω τ≈ , practically all of the charge will flow into the amplifier

and the neighbors will show only a small signal.

SIGNAL PROCESSING

As noted in the introduction, one of the purposes of signal processing is to improve
the signal-to-nose ratio by tailoring the spectral distributions of the signal and the
electronic noise. However, for many detectors electronic noise does not determine the
resolution. For example, in a NaI(Tl) scintillation detector measuring 511 keV gamma
rays, say in a positron-emission tomography system, 25000 scintillation photons are
produced. Because of reflective losses, about 15000 reach the photocathode. This
translates to about 3000 electrons reaching the first dynode. The gain of the electron
multiplier will yield about 3⋅109 electrons at the anode. The statistical spread of the
signal is determined by the smallest number of electrons in the chain, i.e. the 3000
electrons reaching the first dynode, so the resolution / 1 / 3000 2%E E∆ = = , which at
the anode corresponds to about 5⋅104 electrons. This is much larger than electronic
noise in any reasonably designed system. This situation is illustrated in Fig. 12 (top).
In this case, signal acquisition and count rate capability may be the prime objectives of
the pulse processing system. The bottom illustration in Fig. 12 shows the situation for
high resolution sensors with small signals, semiconductor detectors, photodiodes or
ionization chambers, for example. In this case, low noise is critical. Baseline
fluctuations can have many origins, external interference, artifacts due to imperfect
electronics, etc., but the fundamental limit is electronic noise.

FIGURE 11. Cross coupling in a silicon strip sensor



Electronic Noise

Consider a current flowing through a sample bounded by two electrodes, i.e. n
electrons moving with velocity v. The induced current depends on the spacing l
between the electrodes (see “Ramo’s theorem” in ref. 7), so

 nevi
l

=  .

The fluctuation of this current is given by the total differential
2 2

2 ne evdi dv dn
l l

   = +      
,

where the two terms add in quadrature, as they are statistically uncorrelated. From this
one sees that two mechanisms contribute to the total noise, velocity and number
fluctuations.

Velocity fluctuations originate from thermal motion. Superimposed on the average
drift velocity are random velocity fluctuations due to thermal excitations. This
“thermal noise” is described by the long wavelength limit of Plank’s black body
spectrum where the spectral density, i.e. the power per unit bandwidth, is constant
(“white” noise).

Number fluctuations occur in many circumstances. One source is carrier flow that
is limited by emission over a potential barrier. Examples are thermionic emission or
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FIGURE 12.  Signal and baseline fluctuations for large signal variance (top), as in scintillation
detectors or proportional chambers, and for small signal variance, but large baseline fluctuations,
as in semiconductor detectors or liquid Ar ionization chambers, for example.



current flow in a semiconductor diode. The probability of a carrier crossing the barrier
is independent of any other carrier being emitted, so the individual emissions are
random and not correlated. This is called “shot noise”, which also has a “white”
spectrum. Another source of number fluctuations is carrier trapping. Imperfections in a
crystal lattice or impurities in gases can trap charge carriers and release them after a
characteristic lifetime. This leads to a frequency-dependent spectrum / 1 /ndP df f α= ,

where α is typically in the range of 0.5 to 2.

Thermal (Johnson) Noise

The most common example of noise due to velocity fluctuations is the noise of
resistors. The spectral noise density vs. frequency

4ndP kT
df

=

where k is the Boltzmann constant and T the absolute temperature. Since the power in
a resistance R

2
2VP I R

R
= = ,

the spectral voltage noise density
2

2 4n
n

dV e kTR
df

≡ =

and the spectral current noise density
2

2 4n
n

dI kTi
df R

≡ = .

The total noise is obtained by integrating over the relevant frequency range of the
system, the bandwidth. The total noise voltage at the output of an amplifier with a
frequency-dependent gain ( )A f is

2 2 2

0

( )on nv e A f df
∞

= ∫  .

Since the spectral noise components are non-correlated (each black body excitation
mode is independent), one must integrate over the noise power, i.e. the voltage
squared. The total noise increases with bandwidth. Since small bandwidth corresponds
to large rise-times, increasing the speed of a pulse measurement system will increase
the noise. The amplitude distribution of the noise is gaussian, so noise fluctuations
superimposed on the signal also yield a gaussian distribution. Thus, by measuring the
width of the amplitude spectrum of a well-defined signal, one can determine the noise.

Shot Noise

The spectral noise density of shot noise is proportional to the average current
2 2n ei q I= ,

where eq  is the electronic charge. Note that the criterion for shot noise is that carriers
are injected independently of one another, as in thermionic or semiconductor diodes.



Current flowing through an ohmic conductor does not carry shot noise, since the fields
set up by any local fluctuation in charge density can easily draw in additional carriers
to equalize the disturbance.

Signal-to-Noise Ratio vs. Sensor Capacitance

The basic noise sources manifest themselves as either  voltage or current fluctua-
tions. However, the detector signal is a charge, so to allow a comparison we must
express  the signal as a voltage or current. This was illustrated for an ionization
chamber in Fig. 5. As was noted, when the time input constant ( )in det inR C C+  is large

compared to the duration of the sensor current pulse, the signal charge is integrated on
the input capacitance, yielding the signal voltage /( )S S det inv Q C C= + . Assume that

the amplifier has an input noise voltage nv . Then the signal to noise ratio

( )
S S

n n det in

v Q
v v C C

=
+

.

This is a very important result, i.e. the signal-to-noise ratio for a given signal charge is
inversely proportional to the total capacitance at the input node. Note that zero input
capacitance does not yield an infinite signal-to-noise ratio. As shown in Appendix 4 of
the original course notes [1], this relationship only holds for when the input time
constant is greater than about ten times the sensor current pulse width. This is a
general feature that is independent of amplifier type. Since feedback cannot improve
signal-to-noise ratio, it also holds for charge-sensitive amplifiers, although in that
configuration the charge signal is constant, but the noise increases with total input
capacitance (see ref. 1). In the noise analysis the feedback capacitance adds to the total
input capacitance (not the dynamic input capacitance!), so fC  should be kept small.

Pulse Shaping

Pulse shaping has two conflicting objectives. The first is to restrict the bandwidth to
match the measurement time. Too large a bandwidth will increase the noise without
increasing the signal. Typically, the pulse shaper transforms a narrow sensor pulse into
a broader pulse with a gradually rounded maximum at the peaking time. This is
illustrated in Fig. 13. The signal amplitude is measured at the peaking time PT .

TP

SENSOR PULSE SHAPER OUTPUT

FIGURE 13.  A pulse shaper transforms a short sensor pulse into a
longer pulse with a rounded cusp and peaking time TP .



The second objective is to constrain the pulse width so that successive signal pulses
can be measured without overlap (pileup), as illustrated in Fig. 14. Reducing the pulse
duration increases the allowable signal rate, but at the expense of electronic noise.

In designing the shaper it is necessary to balance these conflicting goals. Usually,
many different considerations lead to a “non-textbook” compromise; “optimum
shaping” depends on the application.

A simple shaper is shown in Fig. 15. A high-pass filter sets the duration of the pulse
by introducing a decay time constant dτ . Next a low-pass filter increases the rise time
to limit the noise bandwidth. The high-pass is often referred to as a “differentiator”,
since for short pulses it forms the derivative. Correspondingly, the low-pass is called
an “integrator”. Since the high-pass filter is implemented with a CR section and the
low-pass with an RC, this shaper is referred to as a CR-RC shaper. Although pulse
shapers are often more sophisticated and complicated, the CR-RC shaper contains the
essential features of all pulse shapers, a lower frequency bound and an upper
frequency bound.
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FIGURE 14.  Amplitude pileup when two successive pulses overlap (left). Reducing the shaping time
allows the first pulse to return to the baseline before the second arrives.
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Noise Analysis of a Detector and Front-End Amplifier

To determine how the pulse shaper affects the signal-to-noise ratio consider the
detector front-end in Fig. 16. The detector is represented by a capacitance, a relevant
model for many radiation sensors. Sensor bias voltage is applied through the resistor

BR . The bypass capacitor BC  shunts any external interference coming through the bias

supply line to ground. For high-frequency signals this capacitor appears as a low
impedance, so for sensor signals the “far end” of the bias resistor is connected to
ground. The coupling capacitor CC  blocks the sensor bias voltage from the amplifier
input, which is why a capacitor serving this role is also called a “blocking capacitor”.
The series resistance SR  represents any resistance present in the connection from the

sensor to the amplifier input. This includes the resistance of the sensor electrodes, the
resistance of the connecting wires or traces, any resistance used to protect the
amplifier against large voltage transients (“input protection”), and parasitic resistances
in the input transistor.

The following implicitly includes a constraint on the bias resistance, whose role is
often misunderstood. It is often thought that the signal current generated in the sensor
flows through bR  and the resulting voltage drop is measured. If the time constant

b dR C  is small compared to the peaking time of the shaper PT , the sensor will have
discharged through bR  and much of the signal will be lost. Thus, we have the

condition b d PR C T? , or /b P DR T C? . The bias resistor must be sufficiently large to

block the flow of signal charge, so that all of the signal is available for the amplifier.

To analyze this circuit we’ll assume a voltage amplifier, so all noise contributions
will be calculated as a noise voltage appearing at the amplifier input. Steps in the
analysis are 1. determine the frequency distribution of all noise voltages presented to
the amplifier input from all individual noise sources, 2. integrate over the frequency
response of the shaper (for simplicity a CR-RC shaper) and determine the total noise
voltage at the shaper output, and 3. determine the output signal for a known input
signal charge. The equivalent noise charge (ENC) is the signal charge for / 1S N = .
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FIGURE 16.  A typical detector front-end circuit



The equivalent circuit for the noise analysis (Fig. 17) includes both current and
voltage noise sources. The “shot noise” ind  of the sensor leakage current is represented
by a current noise generator in parallel with the sensor capacitance. As noted above,
resistors can be modeled either as a voltage or current generator. Generally, resistors
shunting the input act as noise current sources and resistors in series with the input act
as noise voltage sources (which is why some in the detector community refer to
current and voltage noise as “parallel” and “series” noise). Since the bias resistor
effectively shunts the input, as the capacitor Cb passes current fluctuations to ground,
it acts as a current generator inb and its noise current has the same effect as the shot
noise current from the detector. By the way, one can also model the shunt resistor as a
noise voltage source and obtain the result that it acts as a current source. Choosing the
appropriate model merely simplifies the calculation. Any other shunt resistances can
be incorporated in the same way. Conversely, the series resistor Rs acts as a voltage
generator. The electronic noise of the amplifier is described fully by a combination of
voltage and current sources at its input, shown as ena and ina.

Thus, the noise sources are
2
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2
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4
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where qe is the electronic charge, Id the sensor bias current, k the Boltzmann constant
and T the temperature. Typical amplifier noise parameters ena and ina are of order
nV/ Hz and pA/ Hz . Amplifiers tend to exhibit a “white” noise spectrum at high
frequencies (greater than order kHz), but at low frequencies show excess noise
components with the spectral density

where the noise coefficient Af is device specific and of order 10-10 – 10-12 V2.
The noise voltage generators are in series and simply add in quadrature. White

noise distributions remain white. However, a portion of the noise currents flows
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FIGURE 17.  Equivalent circuit of a detector front-end for noise analysis.



through the detector capacitance, resulting in a frequency-dependent noise voltage
in /(ωCd), so the originally white spectrum of the sensor shot noise and the bias resistor
now acquires a 1/f behavior. The frequency distribution of all noise sources is further
altered by the combined frequency response of the amplifier chain ( )A f . Integrating
over the cumulative noise spectrum at the amplifier and comparing to the output for a
known input signal yields the signal-to-noise ratio. In this example the shaper is a
simple CR-RC shaper, where for a given differentiation time constant, minimum noise
obtains when the differentiation and integration time constants are equal  i dτ τ τ= ≡ .
In this case the output pulse assumes its maximum amplitude at the time PT τ= .

Although the basic noise sources are currents or voltages, since radiation detectors
are typically used to measure charge, the system’s noise level is conveniently
expressed as an equivalent noise charge Qn . As noted previously, this is equal to the
detector signal that yields a signal-to-noise ratio of one. The equivalent noise charge is
commonly expressed in Coulombs, the corresponding number of electrons, or the
equivalent deposited energy (eV). For the above circuit the equivalent noise charge
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The prefactor 2( /8)e normalizes the noise to the signal gain. The first term combines
all noise current sources and increases with shaping time. The second term combines
all noise voltage sources and decreases with shaping time, but increases with sensor
capacitance. The third term is the contribution of excess (1/f ) noise and, as a voltage
source, also increases with sensor capacitance. The 1/f term is independent of shaping
time, since for a 1/f spectrum the total noise depends on the ratio of upper to lower
cutoff frequency, which depends only on shaper topology, but not on the shaping time.
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FIGURE 18. Equivalent noise charge vs. shaping time



Fig. 18 shows how ENC is affected by shaping time. At short shaping times the
voltage noise dominates, whereas at long shaping times the current noise takes over.
Minimum noise obtains where the current and voltage contributions are equal. The
noise minimum is flattened by the presence of 1/f noise. Increasing the detector
capacitance will increase the voltage noise contribution and shift the noise minimum
to longer shaping times.

For quick estimates one can use the following equation, which assumes an FET
amplifier (negligible ina) and a simple CR-RC shaper with peaking time τ.
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After peaking the output of a simple CR-RC shaper returns to baseline rather
slowly. The pulse can be made more symmetrical, allowing higher signal rates for the
same peaking time. Very sophisticated circuits have been developed to improve this
situation, but a conceptually simple way is to use multiple integrators, as illustrated in
Fig. 19. In this case the integration time constant is made smaller than the
differentiation time constant to maintain the peaking time. Note that the peaking time
is a key design parameter, as it dominates the noise bandwidth and must also
accommodate the sensor response time.

Another type of shaper is the correlated double sampler, illustrated in Fig. 20. This
type of shaper is widely used in monolithically integrated circuits, as many CMOS
processes provide only capacitors and switches, but no resistors. Input signals are
superimposed on a slowly fluctuating baseline. To remove the baseline fluctuations
the baseline is sampled prior to the signal. Next, the signal plus baseline is sampled
and the previous baseline sample subtracted to obtain the signal. The prefilter is
critical to limit the noise bandwidth of the system. Filtering after the sampler is
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FIGURE 19. Pulse shape vs. number of integrators in a CR-nRC shaper



useless, as noise fluctuations on time scales shorter than the sample time will not be
removed. Here the sequence of filtering is critical, unlike a time-invariant linear filter
where the sequence of filter functions can be interchanged.

This is an example of a time-variant filter. The CR nRC−  filter described above
acts continuously on the signal, whereas the correlated double sample changes filter
parameters vs. time. Time-variant filters cannot be analyzed in the frequency domain
(except for some special cases that can be analyzed by analogy). However, just as
filter response can be described either in the frequency or time domain, so can the
noise performance. This is explained in more detail in refs. 3 through 6. The key is
Parseval’s theorem
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The left hand side is essentially integration over the noise bandwidth. The output noise
power scales linearly with the duration of the pulse, so the noise contribution of the
shaper can be split into a  factor that is determined by the shape of the response and a
time factor that sets the shaping time. This leads to a general formulation of the
equivalent noise charge
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FIGURE 20. Principle of a correlated double sample shaper



where C is the sum of all capacitances shunting the input, Fi , Fv and Fvf depend on the
shape of the pulse determined by the shaper and TS is a characteristic time, for
example the peaking time of a CR-nRC shaped pulse or the sampling interval in a
correlated double sampler. The shape factors Fi, Fv are easily calculated
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For time-invariant pulse shaping W(t) is simply the system’s impulse response (the
output signal seen on an oscilloscope) with the peak output signal normalized to unity.
For a time-variant shaper the same equations apply, but the shape factors are
determined differently. See references [3] through [6] for more details.

A pulse shaper formed by a single differentiator and integrator with equal time
constants has Fi = Fv = 0.9 and Fvf = 4, independent of the shaping time constant, so
for the circuit in Fig. 16
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Pulse shapers can be designed to reduce the effect of current noise, e.g. mitigate
radiation damage. Increasing pulse symmetry tends to decrease Fi and increase Fv ,
e.g. to Fi = 0.45 and Fv = 1.0 for a shaper with one CR differentiator and four cascaded
RC integrators.

Noise is improved by reducing the detector capacitance and leakage current,
judiciously selecting all resistances in the input circuit, and choosing the optimum
shaping time constant. The noise parameters of a well-designed amplifier depend
primarily on the input device. Fast, high-gain transistors are generally best.

In field effect transistors, both junction field effect transistors (JFETs) or metal
oxide silicon field effect transistors (MOSFETs), the noise current contribution is very
small, so reducing the detector leakage current and increasing the bias resistance will
allow long shaping times with correspondingly lower noise. The equivalent input

noise voltage 2 4 /n me kT g≈ , where mg is the transconductance, which increases with
operating current. For a given current, the transconductance increases when the
channel length is reduced, so reductions in feature size with new process technologies
are beneficial. At a given channel length minimum noise obtains when a device is
operated at maximum transconductance. If lower noise is required, the width of the
device can be increased (equivalent to connecting multiple devices in parallel). This
increases the transconductance (and required current), but also increases the input
capacitance. At some point the reduction in noise voltage is outweighed by the
increase in total input capacitance. The optimum obtains when the FET’s input
capacitance equals the external capacitance (sensor + stray capacitance). Note that this
capacitive matching criterion only applies when the input current noise contribution of
the amplifying device is negligible.

Capacitive matching comes at the expense of power dissipation. Since the
minimum is shallow, one can operate at significantly lower currents with just a minor
increase in noise. In large detector arrays power dissipation is critical, so FETs are
hardly ever operated at their minimum noise. Instead, one seeks an acceptable
compromise between noise and power dissipation. Similarly, the choice of input
devices is frequently driven by available fabrication processes. High-density



integrated circuits tend to include only CMOS devices, so this determines the input
device, even where a bipolar transistor would provide better performance.

In bipolar transistors the shot noise associated with the base current bI  is

significant, 2 2nb e bi q I= . Since /b c DCI I β= , where cI  is the collector current and

DCβ the DC current gain, this contribution increases with device current. On the other
hand, the equivalent input noise voltage
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The minimum obtainable noise is independent of shaping time (unlike FETs), but only
at the optimum collector current IC , which does depend on shaping time.

In bipolar transistors the input capacitance is usually much smaller than the sensor
capacitance (of order 1 pF), substantially smaller than in FETs with comparable noise.
Since the transistor input capacitance enters into the total input capacitance, this is an
advantage. Note that capacitive matching does not apply to bipolar transistors. Due to
the base current noise bipolar transistors are best at short shaping times, where they
also require lower power than FETs for a given noise level.

When the input noise current is negligible, the noise increases linearly with sensor
capacitance. The noise slope
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depends both on the preamplifier ( ne ) and the shaper ( ,vF T ). The zero intercept can
be used to determine the amplifier input capacitance plus any additional capacitance at
the input node
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Practical noise levels range from <1 e for CCDs at long shaping times to ~104 e in
high-capacitance liquid Ar calorimeters. Silicon strip detectors typically operate at
~103 electrons, whereas pixel detectors with fast readout provide noise of several
hundred electrons. Transistor noise is discussed in more detail in [7].



Timing Measurements

In timing measurements the slope-to-noise ratio must be optimized, rather than the
signal-to-noise ratio alone, so the rise time tr of the pulse is important. The “jitter” σt

of the timing distribution

where σn is the rms noise and the derivative of the signal dS/dt is evaluated at the
trigger level ST. To increase dS/dt without incurring excessive noise the amplifier
bandwidth should match the rise-time of the detector signal. The 10 to 90% rise time
of an amplifier with bandwidth Uf  (see Fig. 9) is
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For example, an oscilloscope with 350 MHz bandwidth has a 1 ns rise time. When
amplifiers are cascaded, which is invariably necessary, the individual rise times add in
quadrature
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Increasing signal-to-noise ratio also improves time resolution, so minimizing the
total capacitance at the input is also important. At high signal-to-noise ratios the time
jitter can be much smaller than the rise time. The timing distribution may shift with
signal level (“walk”), but this can be corrected by various means, either in hardware or
software. For a more detailed tutorial on timing measurements see ref. [8].

INTERFERENCE AND PICKUP

The previous discussion analyzed random noise sources inherent to the sensor and
front-end electronics. In practical systems external noise often limits the obtainable
detection threshold or energy resolution. As with random noise, external pickup
introduces baseline fluctuations. There are many possible sources, radio and television
stations, local RF generators, system clocks, transients associated with trigger signal
and data readout, etc. Furthermore, there are many ways through which these
undesired signals can enter the system. Again, a comprehensive review exceeds the
allotted space, so only a few key examples of pickup mechanisms will be shown. A
more detailed discussion is in the course notes [1].

The most sensitive node is the input. Fig. 21 shows how very small spurious signals
coupled to the sensor backplane can inject substantial charge. Any change in the bias
voltage V∆  directly at the sensor backplane will inject a charge detQ C V∆ = ∆ .

Assume a silicon strip sensor with 10 cm strip length. Then detC  for a single strip is

about 10 pF. If the noise level is nQ =1000 electrons (1.6⋅10-16 C), V∆ must be much

smaller than /n detQ C =16 µV. This can be introduced as noise from the bias supply
(some voltage supplies are quite noisy; switching power supplies can be clean, but
most aren’t) or noise on the ground plane can couple through the capacitor C. Naively,
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one might assume the ground plane to be “clean”, but it can carry significant
interference for the following reason.

One of the most common mechanisms for cross-coupling is shared current paths,
often referred to as “ground loops”. However, this phenomenon is not limited to
grounding. Consider two systems. The first is transmitting large currents from a source
to a receiver. The second is similar, but is attempting a low-level measurement.
According to the prevailing lore, both systems are connected to a massive ground bus,
as shown in Fig. 22. Current seeks the path of least resistance, so the large current
from source 1V will also flow through the ground bus. Although the ground bus is

massive, it does not have zero resistance, so the large current flowing through the
ground system causes a voltage drop V∆ .

In system 2 (source 2V ) both signal source and receiver are also connected to the
ground system. Now the voltage drop V∆  from system 1 is in series with the signal
path, so the receiver measures 2V V+ ∆ . The cross-coupling has nothing to do with
grounding  per se , but is due to the common return path. However, the common
ground caused the problem by establishing the shared path. This mechanism is not
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limited to large systems with external ground busses, but also occurs on the scale of
printed circuit boards and micron-scale integrated circuits. At high frequencies the
impedance is increased due to skin effect and inductance. Note that for high-frequency
signals the connections can be made capacitively, so even if there is no DC path, the
parasitic capacitance due to mounting structures or adjacent conductor planes can be
sufficient to close the loop.

The traditional way of dealing with this problem is to reduce the impedance of the
shared path, which leads to the “copper braid syndrome”. However, changes in the
system will often change the current paths, so this “fix” is not very reliable.
Furthermore, in many detector systems – tracking detectors, for example – the
additional material would be prohibitive. Instead, it is best to avoid the root cause. Fig.
23 shows a sensor connected to a multistage amplifier. Signals are transferred from
stage to stage through definite current paths. It is critical to maintain the integrity of
the signal paths, but this does not depend on grounding – indeed Fig. 23 does not show
any ground connection at all. The most critical parts of this chain are the input, which
is the most sensitive node, and the output driver, which tends to circulate the largest
current. Circuit diagrams usually are not drawn like Fig. 23; the bottom common line

is typically shown as ground. For example, in Fig. 21 the sensor signal current flows
through capacitor C and reaches the return node of the amplifier through “ground”.
Clearly, it is critical to control this path and keep deleterious currents from this area.

However superfluous grounding may be, one cannot let circuit elements simply
float with respect to their environment. Capacitive coupling is always present and any
capacitive coupling between two points of different potential will induce a signal. This
is illustrated in Fig. 24, which represents individual detector modules mounted on a
support/cooling structure. Interference can couple through the parasitic capacitance of
the mount, so it is crucial to reduce the capacitance and control the potential of the
support structure relative to the detector module. Attaining this goal in reality is a
challenge, which is not always met successfully. Nevertheless, paying attention to
signal paths and potential references early on is much easier than attempting to correct
a poor design after it’s done. Troubleshooting is exacerbated by the fact that current
paths interact, so doing the “wrong” thing sometimes brings improvement.
Furthermore, only one mistake can ruin system performance, so if this has been
designed into the system from the outset, one is left with compromises. Nevertheless,
although this area is rife with myths, basic physics still applies.
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 CONCLUSION

Signal processing is a key part of modern detector systems. Proper design is
especially important when signals are small and electronic noise determines detection
thresholds or resolution. Optimization of noise is well understood and predicted noise
levels can be achieved in practical experiments within a few percent of predicted
values. However, systems must be designed very carefully to avoid extraneous pickup.
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